A Teori Asam dan Basa Menurut Arrhenius. 1. Asam menurut Arrhenius. Asam didefinisikan sebagai zat-zat yang dapat memberikan ion hidrogen (H+) bila dilarutkan dalam air. Kemudian ion hidrogen tersebut bergabung dengan molekul air membentuk ion hidronium (H3O+). Contoh: a. Asam klorida dalam air:
Mulai sejak Wikipedia bahasa Indonesia, ensiklopedia netral Teori bersutâbasa keras dan panjang usus, dikenal juga ibarat konsep cemberut-basa Pearson, digunakan dalam ilmu pisah buat menjelaskan pengukuhan senyawa, mekanisme dan kolek reaksi. Ini menetapkan istilah kerasâ atau panjang hatiâ, dan asamâ atau basaâ bagi varietas kimia. Kerasâ berlaku untuk spesies yang kecil, memiliki kondisi beban tinggi kriteria tanggung terutama bertindak kerjakan cemberut, plong tingkat yang bertambah rendah sreg basa, dan terpolarisasi letoi. Panjang ususâ berlaku untuk diversifikasi yang ki akbar, memiliki kondisi muatan rendah dan terlampau mudah terpolarisasi.[1] Konsep ini adalah cara menerapkan gagasan tumpangsuh orbital pada kasus kimia tertentu.[2] Teori ini digunakan dalam konteks di mana deskripsi kualitatif, bukan kuantitatif, akan membantu privat mengerti faktor-faktor dominan yang mendorong sifat dan reaksi kimia. Ini terutama terjadi intern kimia logam transisi, di mana banyak percobaan telah dilakukan bikin menentukan bujuk nisbi ligan dan ion besi transisi intern hal kekerasan dan kelembutannya. Teori bersutâbasa keras dan lunak pun berfaedah dalam memprediksi produk bermula reaksi metatesis. Pada tahun 2005 ditunjukkan bahwa bahkan sensitivitas dan kinerja bahan peledak dapat dijelaskan berdasarkan teori asamâbasa keras dan lunak.[3] Ralph Pearson memperkenalkan mandu asamâbasa keras dan panjang hati lega awal 1960-an[4] [5] [6] sebagai upaya lakukan menyatukan kimia reaksi anorganik dan organik.[7] Teori [sunting sunting sumber] Senderut Basa Lega dasarnya, teori menyatakan bahwa bersut kepala dingin bereaksi bertambah cepat dan takhlik kombinasi yang makin abadi dengan basa panjang hati, sedangkan asam keras bereaksi kian cepat dan membuat jalinan yang makin lestari dengan basa keras, semua faktor bukan menjadi setolok.[8] Klasifikasi dalam karya lugu sebagian besar didasarkan pada konstanta kesetimbangan untuk reaksi dua basa Lewis yang bersaing cak bagi satu asam Lewis. Proporsi kecenderungan asam dan basa keras terhadap asam dan basa panjang hati Adat Bersut dan basa keras Senderut dan basa kepala dingin ruji-ruji atom/ion kecil besar tingkat oksidasi tinggi sedikit maupun nol polarisabilitas rendah hierarki elektronegativitas basa tinggi rendah energi HOMO basa[8] [9] minus tataran energi LUMO asam[8] [9] tinggi rendah saja > HOMO basa panjang hati keterikatan kawin ionik kombinasi kovalen Contoh asam dan basa persisten dan lunak Senderut Basa keras lunak persisten lunak Hidronium H3O+ Raksa CH3Hg+, Hg2+, Hg2 2+ Hidroksida OHâ Hidrida Hâ Ferum alkali Li+,Na+,K+ Platinum Pt2+ Alkoksida ROâ Tiolat RSâ Titanium Ti4+ Paladium Pd2+ Halogen Fâ,Clâ Halogen Iâ Kromium Cr3+,Cr6+ Selaka Ag+ Amonia NH3 Fosfina PR3 Boron trifluorida BF3 Borana BH3 Karboksilat CH3COOâ Tiosianat SCNâ Karbokation R3C+ P-kloranil Karbonat CO3 2â Karbon monoksida CO Lantanida Ln3+ Logam siram M0 Hidrazina Lengkung langit2H4 Benzena C6H6 Torium, Uranium Th4+, U4+ Emas Au+ Kasus perbatasan juga diidentifikasi asam perbatasan adalah trimetilboran, belerang dioksida dan kation fero Fe2+, kobalt Co2+, sesium Cs+, dan timbal Pb2+. Basa perbatasan adalah anilin, piridin, nitrogen N2 dan anion azida, klorida, bromida, nitrat dan sulfat. Secara umum, senderut dan basa berinteraksi dan interaksi yang paling stabil ialah keras-keras karakter ionogenik dan lunak-lunak kepribadian kovalen. Upaya lakukan menghitung kelunakanâ suatu basa terdiri dari menentukan konstanta kesetimbangan bagi kesetimbangan berikut BH + CH 3 Hg + â˝ â â â H + + CH 3 HgB {\displaystyle {\ce {BH + CH3Hg+ H+ + CH3HgB}}} Kekerasan kimia [sunting sunting sendang] Kekerasan kimia dalam elektron volt Asam Basa Hidrogen H+ â Fluorida Fâ 7 Aluminium Al3+ Amonia NH3 Litium Li+ Hidrida Hâ Skandium Sc3+ Karbonium monoksida CO Natrium Na+ Hidroksil OHâ Lantanum La3+ Sianida CNâ Seng Zn2+ Fosfina PH3 Karbonium dioksida CO2 Nitrit NO2 â Welirang dioksida SO2 Hidrosulfida SHâ Iodin I2 Metana CH3 â Grafik 2. Data kekerasan kimia [10] Pada tahun 1983, Pearson bersama dengan Robert Parr memperluas teori senderutâbasa persisten dan lunak kualitatif dengan definisi kuantitatif kekerasan kimia Ρ {\displaystyle \eta } yang proporsional dengan manusia kedua energi total sistem kimia dengan mengupas perubahan jumlah elektron pada lingkungan inti yang tetap[10] Ρ = 1 2 2 E N 2 Z {\displaystyle \eta ={\frac {1}{2}}\left{\frac {\partial ^{2}E}{\partial Horizon^{2}}}\right_{Z}} . Faktor secabik enggak tetap dan sering ditinggalkan sesuai catatan Pearson.[11] Definisi operasional untuk kekerasan ilmu pisah diperoleh dengan menerapkan pendekatan perbedaan berhingga [en] untuk khalayak kedua[12] Ρ â E Kaki langit + 1 â 2 E Falak + E Lengkung langit â 1 2 = E T â 1 â E Cakrawala â E Kaki langit â E N + 1 2 = 1 2 I â A {\displaystyle {\begin{aligned}\eta &\approx {\frac {EN+1-2EN+EFalak-1}{2}}\\&={\frac {EN-1-EN-EN-ELengkung langit+1}{2}}\\&={\frac {1}{2}}I-A\end{aligned}}} dengan I yaitu potensial ionisasi dan A ialah afinitas elektron. Pernyataan ini mengimplikasikan bahwa kekerasan ilmu pisah berbanding lurus dengan sela ban [en] sistem kimia, jika terdapat sela. Turunan pertama energi dengan memperhatikan jumlah elektron sama dengan potensial kimia, Îź {\displaystyle \mu } , sistem, Îź = E N Z {\displaystyle \mu =\left{\frac {\partial E}{\partial Tepi langit}}\right_{Z}} , yang yakni sediakala bersumber definisi operasional untuk potensi kimia diperoleh dari ancangan perbedaan berhingga khalayak orde pertama sebagai Îź â E N + 1 â E T â 1 2 = â E Horizon â 1 â E N â E N â E T + 1 2 = â 1 2 I + A {\displaystyle {\begin{aligned}\mu &\approx {\frac {EKaki langit+1-EN-1}{2}}\\&={\frac {-ETepi langit-1-EN-ECakrawala-EN+1}{2}}\\&=-{\frac {1}{2}}I+A\end{aligned}}} yang seperti mana destruktif dari definisi elektronegativitas Ď {\displaystyle \chi } pada skala Mulliken Îź = â Ď {\displaystyle \mu =-\chi } . Hubungan kekerasan dan elektronegativitas Mulliken sebagai berikut 2 Ρ = Îź Falak Z â â Ď N Z {\displaystyle 2\eta =\left{\frac {\partial \mu }{\partial N}}\right_{Z}\approx -\left{\frac {\partial \chi }{\partial N}}\right_{Z}} , dan privat kondisi ini, kekerasan yakni format resistensi pada deformasi atau perubahan. Demikian lagi nilai nol menunjukkan kelembutan maksimum, di mana kelembutan didefinisikan sebagai antiwirawan dari kekerasan. N domestik antologi ponten kekerasan semata-mata skor anion hidrida yang bertele-tele. Perbedaan lain yang dicatat dalam artikel 1983 orisinil ialah kekerasan Tl3+ yang jelas kian tinggi dibandingkan dengan Tl+. Modifikasi [sunting sunting perigi] Jika interaksi antara asam dan basa dalam larutan menghasilkan suatu campuran kesetimbangan, kurnia interaksi dapat dihitung menunggangi konstanta kesetimbangan. Alternatif penentuaan kuantitatif adalah erotis entalpi pembentukan aduk asam-basa Lewis privat pelarut non-koordinasi. Model ECW adalah model kuantitatif nan menjelaskan dan memprediksi kurnia interaksi asam basa Lewis, -ÎH. Teladan ini menetapkan parameter E dan C kerjakan banyak asam dan basa Lewis. Per asam dikarakterisasi oleh EA dan CA. Masing-masing basa dikarakterisasi dengan cara yang sama yaitu EB dan CB. Parameter E dan C merujuk lega kontribusi elektrostatis dan kovalen terhadap kekuatan ikatan asam dan basa nan akan terbentuk. Persamaannya adalah â Î H = E A E B + C A C B + W {\displaystyle -\Delta H=E_{A}E_{B}+C_{A}C_{B}+W} W merepresentasikan kontribusi energi setia bakal reaksi asamâbasa seperti pada rekahan bersut atau basa dimer. Pertepatan di atas memprediksi pembalikan kemustajaban asam dan basa. Penyajian grafis persamaan tersebut menunjukkan bahwa bukan ada orde tunggal kekuatan basa Lewis atau arti asam Lewis.[13] Model ECW mengakomodasi kegagalan penjelasn indikator distingtif interaksi senderut-basa. Metode tersapu yang mengadopsi formalisme E dan C berpunca Drago dan rekan secara kuantitatif memprediksi konstanta pembentukan cak bagi kompleks banyak ion logam ditambah proton dengan beraneka macam asam Lewis unidentat dalam larutan air, dan lagi memberi wacana tentang faktor-faktor yang mengeset perilaku asamâbasa keras dan lunak n domestik larutan.[14] Sistem kuantitatif lain sudah diajukan, di mana kekuatan asam Lewis terhadap fluorida basa Lewis didasarkan lega afinitas fase asap bakal fluorida.[15] Skala kekuatan basa satu parameter adendum telah disajikan.[16] Namun, telah ditunjukkan bahwa lakukan menentukan bujuk keistimewaan basa Lewis maupun kekuatan asam Lewis sekurang-kurangnya harus ki memenungkan dua sifat.[17] Bakal teori bersutâbasa persisten dan lunak kualitatif Pearson, kedua sifat tersebut adalah kekerasan dan kekuatan, sedangkan cak bagi model ECW kuantitatif Drago, kedua sifat tersebut bersifat elektrostatik dan kovalen. Aturan Kornblum [sunting sunting sumber] Penerapan teori cemberutâbasa keras dan lunak adalah yang disebut kebiasaan Kornblum sesuai nama penemunya Nathan Kornblum yang menyatakan bahwa dalam reaksi dengan nukleofil ambiden nukleofil yang dapat mengupas semenjak dua tempat maupun kian, atom yang lebih elektronegatif bereaksi ketika mekanisme reaksi SKaki langit1 dan yang adv minim elektronegatif intern reaksi SN2. Resan ini ditemukan plong tahun 1954[18] mendahului teori asamâbasa keras dan lunak saja dalam istilah asamâbasa gigih dan lunakpenjelasannya adalah bahwa dalam reaksi SLengkung langit1 karbokation bersut keras bereaksi dengan basa persisten elektronegativitas hierarki dan bahwa intern reaksi SN2 karbon tetravalen asam sabar bereaksi dengan basa sabar. Menurut temuan, alkilasi elektrofilik pada CNâ bebas terjadi secara istimewa plong zat arang, terlepas pecah apakah mekanisme SN1 alias SN2 terlibat dan apakah elektrofil keras atau kepala dingin nan digunakan. Serangan N yang disukai, sama dengan didalilkan buat elektrofil gentur oleh kaidah bersutâbasa keras dan lunak, tidak dapat diamati dengan zat alkilasi apa sekali lagi. Senyawa isosiano hanya terbentuk dengan elektrofil yang sangat tanggap nan bereaksi tanpa penghambat aktivasi karena menumpu batas difusi. Dikatakan bahwa deklarasi tentang konstanta laju sewenang-wenang dan lain tentang kekerasan dari mitra reaksi diperlukan untuk memprediksi hasil alkilasi ion sianida.[19] Mentah-baru ini, pengamatan analog dilakukan bakal reaksi anion fenolat dengan karbokation. Farik dengan prediksi yang dibuat oleh aturan Kornblum, perubahan dari mekanisme SN1 ke SHorizon2 lebih menaksir menyerang oksigen daripada karbon.[20] Kritik [sunting sunting sumber] Plong 2011, Herbert Mayr et al. dari Universitas Ludwig Maximilian MĂźnchen LMU menerbitkan ulasan kritis di Angewandte Chemie.[21] Analisis berturut-masuk dari berbagai jenis sistem organik ambiden mengungkapkan bahwa pendekatan yang bertambah jompo berdasarkan kontrol termodinamika/ilmu gerak menggambarkan reaktivitas senyawa organik dengan abstrak, sedangkan prinsip senderutâbasa keras dan panjang usus sebenarnya gagal dan harus ditinggalkan internal rasionalisasi reaktivitas ambiden senyawa organik. Lihat sekali lagi [sunting sunting perigi] Reaksi asam-basa Oksofilisitas [en] Mode ECW [en] Pustaka [sunting sunting sumber] ^ Jolly, W. L. 1984. Modern Inorganic Chemistry . New York McGraw-Hill. ISBN 978-0-07-032760-3. ^ Pearson, Ralph G. 1985. âAbsolute electronegativity and absolute hardness of Lewis acids and basesâ. Journal of the American Chemical Society. 107 24 6801â6806. doi ISSN 0002-7863. ^ [1] Koch, Acid-Base Interactions in Energetic Materials I. The Hard and Soft Acids and Bases HSAB Principle-Insights to Reactivity and Sensitivity of Energetic Materials, Prop.,Expl.,Pyrotech. 30 2005, 5 ^ Pearson, Ralph G. 1963. âHard and Soft Acids and Basesâ. J. Am. Chem. Soc. 85 22 3533â3539. doi ^ Pearson, Ralph G. 1968. âHard and soft acids and bases, HSAB, part 1 Fundamental principlesâ. J. Chem. Educ. 1968 45 581â586. Bibcode1968JChEd..45..581P. doi ^ Pearson, Ralph G. 1968. âHard and soft acids and bases, HSAB, part II Underlying theoriesâ. J. Chem. Educ. 1968 45 643â648. Bibcode1968JChEd..45..643P. doi ^ [2] R. G. Pearson, Chemical Hardness â Applications From Molecules to Solids, Wiley-VCH, Weinheim, 1997, 198 pp ^ a b c IUPAC, Glossary of terms used in theoretical organic chemistry, accessed 16 Dec 2006. ^ a b Miessler and Tarr âInorganic Chemistryâ 2nd ed. Prentice-Hall 1999, ^ a b Robert G. Parr & Ralph G. Pearson 1983. âAbsolute hardness companion parameter to absolute electronegativityâ. J. Am. Chem. Soc. 105 26 7512â7516. doi ^ Ralph G. Pearson 2005. âChemical hardness and density functional theoryâ PDF. J. Chem. Sci. 117 5 369â377. . doi ^ Delchev, Ya. I.; A. I. Kuleff; J. Maruani; Tz. Mineva; F. Zahariev 2006. Jean-Pierre Julien; Jean Maruani; Didier Mayou, ed. Strutinskyâs shell-correction method in the extended Kohn-Sham scheme application to the ionization potential, electron affinity, electronegativity and chemical hardness of atoms in Recent Advances in the Theory of Chemical and Physical Systems. New York Springer-Verlag. hlm. 159â177. ISBN 978-1-4020-4527-1. ^ Vogel G. C.;Drago, R. S. 1996. âThe ECW Hipotetisâ. Journal of Chemical Education. 73 8 701â707. Bibcode1996JChEd..73..701V. doi ^ Hancock, R. D.; Martell, A. E. 1989. âLigand design for the selective complexation of besi ions in aqueous solutionâ. Chemical Reviews. 89 8 1875â1914. doi ^ Christe, Dixon, McLemore, D.; Wilson, Sheehy, Boatz, 2000. âOn a quantitative scale for Lewis acidity and recent progress in polynitrogen chemistryâ. Journal of Fluorine Chemistry. 101 2 151â153. doi ISSN 0022-1139. ^ Laurence, C. and Gal, J-F. Lewis Basicity and Affinity Scales, Data and Measurement, Wiley 2010 p 51 ISBN 978-0-470-74957-9 ^ Cramer, R. E., and Bopp, T. Falak. 1977 Great E and C plot. Graphical display of the enthalpies of adduct formation for Lewis acids and bases. Journal of Chemical Education 54 612-613 ^ The Mechanism of the Reaction of Silver Nitrite with Alkyl Halides. The Contrasting Reactions of Silver and Alkali Metal Salts with Alkyl Halides. The Alkylation of Ambident Anions Nathan Kornblum, Robert A. Smiley, Robert K. Blackwood, Don C. Iffland J. Am. Chem. Soc.; 1955; 7723; 6269-6280. doi ^ Tishkov, Alexander A.; Mayr, Herbert 2004. âAmbident Reactivity of the Cyanide Ion A Failure of the HSAB Principleâ. Angewandte Chemie International Edition. 44 1 142â145. doi PMID 15599920. ^ Mayer, Robert J.; Breugst, Martin; Hampel, Nathalie; Ofial, Armin R.; Mayr, Herbert 2019-06-26. âAmbident Reactivity of Phenolate Anions Revisited A Quantitative Approach to Phenolate Reactivitiesâ. Journal of Organic Chemistry. doi ^ Mayr, Herbert 2011. âFarewell to the HSAB Treatment of Ambident Reactivityâ. Angewandte Chemie International Edition. 50 29 6470â6505. doi PMID 21726020.
Teoriasam-basa keras dan lunak, dikenal juga sebagai konsep asam-basa Pearson, digunakan dalam kimia untuk menjelaskan stabilitas senyawa, mekanisme dan jalur reaksi.Ini menetapkan istilah 'keras' atau 'lunak', dan 'asam' atau 'basa' untuk spesies kimia. 'Keras' berlaku untuk spesies yang kecil, memiliki kondisi muatan tinggi (kriteria muatan terutama berlaku untuk asam, pada tingkat yang
PembahasanMenurut Bronsted-Lowry, asam adalah donor proton dan basa adalah aseptor proton . Ciri dari pasangan asam basa konjugasi yaitu senyawanya yang mirip dan hanya berselisih satu ion . Nama konjugasi dituliskan untuk senyawa di ruas kanan tanda panah pada persamaan reaksi. Dengan demikian, pada persamaan reaksi tersebut CN â a q + H 2 â O l â HCN a q + OH â a q basa asam asam basa konjugasi konjugasi Dengan demikian, berlaku sebagai basa sesuai dengan teori asam basa dari Bronsted-Lowry. Jadi, jawaban yang benar adalah Bronsted-Lowry, asam adalah donor proton dan basa adalah aseptor proton . Ciri dari pasangan asam basa konjugasi yaitu senyawanya yang mirip dan hanya berselisih satu ion . Nama konjugasi dituliskan untuk senyawa di ruas kanan tanda panah pada persamaan reaksi. Dengan demikian, pada persamaan reaksi tersebut Dengan demikian, berlaku sebagai basa sesuai dengan teori asam basa dari Bronsted-Lowry. Jadi, jawaban yang benar adalah B.
TeoriAsam Basa - Basa merupakan sebuah zat yang bertindak sebagai asam dan menghasilkan senyawa yang disebut garam.Padahal itu termasuk kedalam zat yang bisa menetralkan asam. Asam didefinisikan untuk zat yang berdisosiasi ketika larut dalam air dan menghasilkan kation hidrogen (H+), sedangkan basa didefinisikan untuk zat yang berdisosiasi ketika larut dalam air dan anion hidroksida (OH)-).
Halo Fajar R, Hal tersebut sesuai dengan teori asam basa yang dikemukakan oleh Bronsted-Lowry. Agar lebih paham, simak pembahasan berikut yaa Perhatikan pada reaksi tersebut, ion CN- menerima satu ion H+ dari H2O sehingga CN- di akhir reaksi berubah menjadi HCN, sedangkan H2O yang telah kehilangan satu ion H+ berubah menjadi OH- di akhir reaksi. Berdasarkan teori asam basa Bronsted-Lowry, asam adalah spesi yang mendonorkan ion H+ atau proton ke pasangan reaksinya, sedangkan basa adalah spesi yang menerima ion H+ atau proton dari pasangan reaksinya. Dengan demikian, ion CN- berlaku sebagai basa pada reaksi tersebut sesuai dengan teori asam basa Bronsted Lowry. Sedangkan H2O bersifat sebagai basa pada reaksi tersebut. Agar lebih jelas, perhatikan gambar terlampir. Terimakasih sudah bertanya di Roboguru, semoga terbantu D
. 225 487 153 267 445 259 318 128
cn berlaku sebagai basa sesuai dengan teori